

Identification & Monitoring of Poplar Plantations with Hypertemporal Satellite Remote Sensing

Yousra Hamrouni^{1,2}

D. Sheeren², E. Paillassa³, V. Chéret² & C. Monteil²

¹Conseil National du Peuplier ²UMR DYNAFOR, INRAE / Université de Toulouse ³IDF / Centre National de la Propriété Forestière

Poplar: 1st deciduous tree species planted in France

French forest= 16.9 M ha

Distribution of plantation areas by main species planted (source: translated from IGN, 2017)

Poplar: 1st deciduous tree species planted in France

Natural poplars: riparian woodland

Fast growing trees (15 years) **Good wood quality** Light wood packaging

Planted poplars: timber production

Poplar: 1st deciduous tree species planted in France

What is the surface area of the poplar plantations in France?

How does it change over time?

Light wood packaging

Poplar area in France: high uncertainty...

1. Forest database: BD Forêt® IGN

⇒ 10 years to get a national coverage

2. Statistical forest inventory

⇒ Annual estimates but not accurate enough

3. Cadastral register

⇒ Based only on declarations

Excerpts from the cadastral register of 2013

🎮 Poplar area in France: high uncertainty...

1. Forest database: BD Forêt® IGN

⇒ 10 years to get a national coverage

2. Statistical forest inventory

⇒ Annual estimates but not accurate enough

⇒ Based only on declarations

Excerpts from the cadastral register of 2013

Poplar area in France: high uncertainty...

1. Forest database: BD Forêt® IGN

2. Statistical forest inventory

What tools are available to ensure a cost-effective monitoring of the poplar resource?

Which methodology must be followed in order to meet the large scale requirements?

Excerpts from the cadastral register of 2013

Main objective: monitoring of the poplar resource

Main objective: monitoring of the poplar resource

Unprecedented images: Sentinel-2 time series

- Sentinel-2A & Sentinel-2B
- 10 spectral bands: VIS → SWIR
- Very high temporal resolution: 5 days
- High spatial resolution: 10 to 20 m
- Tiles of 100 km² area

Data accessible to all the community

- Implementation of pre-processing and dissemination infrastructures
- Sentinel-2 images provided in level 2A (atmospheric correction)

Free and open source tools

- OrfeoToolBox, iota2, Google Earth Engine
- Source codes, Python libraries

- Unprecedented images: Sentinel-2 time series
 - Sentinel-2A & Sentinel-2B
 - 10 spectral bands: VIS → SWIR
 - ?

n temporal resolution: 5 days

Identification of poplar plantations and annual estimates of their surfaces using Sentinel-2 time series

- Tiles of 100 km² area
- Data accessible to all the community
 - 1. Ability to identify poplar plantations locally?
 - Sentinel-2 images provided in level 2A (atmospheric correction)
 - 2. Ability to generalize on a large scale?
- Free and open source tools
 - OrfeoToolBox, iota2, Google Earth Engine
 - Source codes, Python libraries

- Unprecedented images: Sentinel-2 time series
 - Sentinel-2A & Sentinel-2B
 - 10 spectral bands: VIS → SWIR
 - ?

h temporal resolution: 5 days

Identification of poplar plantations and annual estimates of their surfaces using Sentinel-2 time series

- Tiles of 100 km² area
- Data accessible to all the community
 - 1. Ability to identify poplar plantations locally?
 - Sentinel-2 images provided in level 2A (atmospheric correction)
 2.Ability to generalize on a large scale ?
- Free and open source tools
 - OrfeoToolBox, iota2, Google Earth Engine
 - Source codes, Python libraries

Study areas: three main poplar sites

Three contrasting sites: cultivars, silvicultural practices and climatic conditions

Study areas: three main poplar sites

Sentinel-2 images from Theia plateform: level 2A products with atmospheric correction and cloud mask

Northeast: 26 dates

Center: 34 dates

Southwest: 36 dates

Local supervised classification: results

Tile code	Training size ¹ per class in pixels	No. classes	Overall Accuracy _(*30)	Poplar F-score _(*30)				
Without photo interpretation of poplars (outdated data)								
31UEQ	1250	6	65.6±6.9 %	72.6±5.7 %				
30TYT	2000	6	$65.8{\pm}2.2~\%$	$86.7 \pm 1.7 \%$				
31TCJ	3850	6	79.5±3.7 %	89.1±3.9 %				

Local supervised classification: results

0)	Poplar F-score _(*30)	Overall Accuracy _(*30)	No. classes	Training size ¹ per class in pixels	Tile code
	d data)	poplars (outdate	etation of	ithout photo interpre	W
%	72.6±5.7 %	65.6±6.9 %	6	1250	31UEQ
%	86.7±1.7 %	$65.8{\pm}2.2~\%$	6	2000	30TYT
%	89.1±3.9 %	79.5±3.7 %	6	3850	31TCJ
	data)	oplars (updated	ation of p	With photo interpret	э
%	89.5±3.3 %	73.7±2.0 %	6	1250	31UEQ
%	99.3±0.2 %	$74.9 \pm 1.9 \%$	6	2000	30TYT
%	97.9±0.8 %	$80.0 {\pm} 0.6 \%$	6	3850	31TCJ

¹ Training samples represent 50% of the available reference data.

Local supervised classification: results

Tile code	Training size ¹ per class in pixels	No. classes	Overall Accuracy _(*30)	Poplar F-score _(*30)
W	ithout photo interpre	etation of	poplars (outdate	d data)
31UEQ	1250	6	65.6±6.9 %	72.6±5.7 %
30TYT	2000	6	$65.8{\pm}2.2~\%$	86.7±1.7 %
31TCJ	3850	6	79.5±3.7 %	89.1±3.9 %
8	With photo interpret	ation of p	oplars (updated	data)
31UEQ	1250	6	73.7±2.0 %	89.5±3.3 %
30TYT	2000	6	$74.9{\pm}1.9~\%$	99.3±0.2 %
31TCJ	3850	6	$80.0 {\pm} 0.6 \%$	$97.9 \pm 0.8 \%$

¹ Training samples represent 50% of the available reference data.

- High capacity of Sentinel-2 identify poplar plantations at the tile scale
- Up to 17% loss of poplar F-score with outdated samples
- Importance of data update to ensure the best classification results

Identification of poplar plantations and annual estimates of their surfaces using Sentinel-2 time series

- - 1. Ability to identify poplar plantations locally?

- 2. Ability to generalize on a large scale?

- Unprecedented images: Sentinel-2 time series
 - Sentinel-2A & Sentinel-2B
 - 10 spectral bands: VIS → SWIR
 - ?

h temporal resolution: 5 days

Identification of poplar plantations and annual estimates of their surfaces using Sentinel-2 time series

- Tiles of 100 km² area
- Data accessible to all the community
 - 1. Ability to identify poplar plantations locally?

- Sentinel-2 images provided in level 2A (atmospheric correction)
 - 2. Ability to generalize on a large scale?
- Free and open source tools
 - OrfeoToolBox, iota2, Google Earth Engine
 - Source codes, Python libraries

For 3 tiles:

- Local classification x3
- Photo interpretation x3
- → 3 independent models

For 3 tiles:

- Local classification x3
- Photo interpretation x3
- → 3 independent models

For 3 tiles:

- Local classification x3
- Photo interpretation x3
- → 3 independent models

Transfer learning (TL) for large scale mapping

Transfer learning (TL) for large scale mapping

Local model tile 1

Proposed TL technique: Active Learning (AL)

Proposed TL technique: Active Learning (AL)

- Principle: AL is based on the hypothesis that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns (Settles, 2010)
- Well motivated use when training samples are scarce and difficult to collect
- Only relevant samples are queried: ranking criterion (uncertainty and/or diversity)

Proposed TL technique: Active Learning (AL)

- Principle: AL is based on the hypothesis that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns (Settles, 2010)
- Well motivated use when training samples are scarce and difficult to collect
- Only relevant samples are queried: ranking criterion (uncertainty and/or diversity)
- Example with two tiles:

- \bullet Active learning between the three tiles (two by two): six combinations (Nord \rightarrow South, Center → North...):
 - Initial model: a local model learned in one tile
 - Samples addition from a second tile (10 in each iteration)
 - Stopping criterion: 1000 extra samples
 - Validation on the initial and second tile
- Active learning assessment: comparison with a "passive learning model" based on a random selection of samples

Measurement of classification performance for all classes combined (Overall accuracy, global F-score) and also by class (Class F-score)

- Active learning from the north-eastern (source) to the south-western tile (target)
 - Overall accuracy (OA) assessment: all the classes

- Low OA value before Active learning adaptation & improvement with the addition of target samples
- Active learning model > Random sampling model: +5% difference on average
- The model remained valid on the source tile

- Active learning from the north-eastern (source) to the south-western tile (target)
 - **Class F-score assessment: case of the poplar class**

- High poplar F-score even before adaptation
- Queried random samples ~ 8x queried active learning samples
- The north-eastern model is capable to accurately detect south-western poplars

- Active learning from the south-western (source) to the north-eastern tile (target)
 - Class F-score assessment: case of the poplar class

- Lower poplar F-score before samples addition compared to the opposite direction of transfer
- Queried active learning samples ~ 2x queried random samples
- The south-western model needed extra target samples to accurately detect north-eastern poplars

- Active learning from the south-western (source) to the north-eastern tile (target)
 - Class F-score assessment: case of the poplar class

→ The pixels selected by AL are located in the areas of uncertainty

- Lower poplar F-score before samples addition compared to the opposite direction of transfer
- Queried active learning samples ~ 2x queried random samples
- The south-western model needed extra target samples to accurately detect north-eastern poplars

- Active learning using the two-tile model (south+north) to predict the central tile
 - **Class F-score assessment: case of the poplar class**

- Very high poplar F-score without any sample addition
- Queried random samples >>>> Queried active learning samples
- The resulting global model is well suited to all three tiles

Conclusions & future work

- Very good ability of Sentinel-2 time series to identify poplar stands at the tile scale
- Interest of active learning to quickly create a global model with a minimum of samples ⇒ approach adapted to large scale
- Contribution of active learning for poplars and the other deciduous classes
- Influence of noise on the choice of samples with active learning (undetected clouds, mixed classes....) ⇒ adapt the informativeness criterion

Work in progress

- Variable selection ⇒ reduce the dimension of the data and speed up the processing
- National mapping: configuration of the iota2 processing chain
- Yearly change detection: clear cuts and new plantations

Active learning: parameters

Informativeness measure: uncertainty

- **Entropy**: it measures the variability of the probability of belonging to all possible classes in the model: a "disorder measure" ⇒ The higher its value, the greater the uncertainty
- **Margin sampling**: difference in probability between the two most probable classes \Rightarrow the lower its value, the more uncertain the model is

Example:

Class	1	2	3	4	5	Entropy	MS
Pixel A	0.4	0.45	0.1	0.03	0.02	1.14	0.05
Pixel B	0.4	0.2	0.25	0.12	0.03	1.42	0.15

> Transfer directions:

All combinations have been tested (6): South → North, South → Center, North → South.

Learning classes:

- Mixed and pure classes
- Only pure classes

- Active learning from the north-eastern (source) to the south-western tile (target)
 - Class F-score assessment: case of the chestnut class
 - Influence on the missing classes in the initial model

- Active learning from the north-eastern (source) to the south-western tile (target)
 - Class F-score assessment: case of the locust class
 - Influence of the uncertainty measure

- Active learning from the north-eastern (source) to the south-western tile (target)
 - Class F-score assessment: case of the locust class
 - Influence of the presence of mixed classes in training

